New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis

نویسندگان

  • Jianqing FAN
  • Runze LI
چکیده

Semiparametric regression models are very useful for longitudinal data analysis. The complexity of semiparametric models and the structure of longitudinal data pose new challenges to parametric inferences and model selection that frequently arise from longitudinal data analysis. In this article, two new approaches are proposed for estimating the regression coefficients in a semiparametric model. The asymptotic normality of the resulting estimators is established. An innovative class of variable selection procedures is proposed to select significant variables in the semiparametric models. The proposed procedures are distinguished from others in that they simultaneously select significant variables and estimate unknown parameters. Rates of convergence of the resulting estimators are established. With a proper choice of regularization parameters and penalty functions, the proposed variable selection procedures are shown to perform as well as an oracle estimator. A robust standard error formula is derived using a sandwich formula and is empirically tested. Local polynomial regression techniques are used to estimate the baseline function in the semiparametric model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Analysis of Longitudinal Data with Semiparametric Estimation of Covariance Function.

Improving efficiency for regression coefficients and predicting trajectories of individuals are two important aspects in analysis of longitudinal data. Both involve estimation of the covariance function. Yet, challenges arise in estimating the covariance function of longitudinal data collected at irregular time points. A class of semiparametric models for the covariance function is proposed by ...

متن کامل

Simultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data

We consider the problem of simultaneous variable selection and estimation in additive, partially linear models for longitudinal/clustered data. We propose an estimation procedure via polynomial splines to estimate the nonparametric components and apply proper penalty functions to achieve sparsity in the linear part. Under reasonable conditions, we obtain the asymptotic normality of the estimato...

متن کامل

Joint Modeling of Longitudinal Data with Informative Observation times and Dropouts

In many longitudinal studies, the response process is correlated with observation times and dropout. We propose a joint modeling for analysis of longitudinal data with informative observation times and dropout. We specify a semiparametric linear regression model for the longitudinal process, and accelerated time models for the observation and the dropout processes, while leaving the distributio...

متن کامل

Issues in Claims Reserving and Credibility: a Semiparametric Approach with Mixed Models

Verrall (1996) and England & Verrall (2001) first considered the use of smoothing methods in the context of claims reserving. They applied two smoothing procedures in a likelihood-based way, namely the locally weighted regression smoother (‘loess’) and the cubic smoothing spline smoother. Using the statistical methodology of semiparametric regression and its connection with mixed models (see e....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004